384 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 2, FEBRUARY 2018 EMB N IEEE
—o—

b@v%’,m
Slgral Processing Soclely ®

P33
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Abstract— Incorporation of prior knowledge about organ
shape and location is key to improve performance of image
analysis approaches. In particular, priors can be useful in
cases where images are corrupted and contain artefacts due
to limitations in image acquisition. The highly constrained
nature of anatomical objects can be well captured with
learning-based techniques. However, in most recent and
promising techniques such as CNN-based segmentation
it is not obvious how to incorporate such prior knowl-
edge. State-of-the-art methods operate as pixel-wise clas-
sifiers where the training objectives do not incorporate the
structure and inter-dependencies of the output. To over-
come this limitation, we propose a generic training strategy
that incorporates anatomical prior knowledge into CNNs
through a new regularisation model, which is trained end-
to-end. The new framework encourages models to follow
the global anatomical properties of the underlying anatomy
(e.g. shape, label structure) via learnt non-linear represen-
tations of the shape. We show that the proposed approach
can be easily adapted to different analysis tasks (e.g. image
enhancement, segmentation) and improve the prediction
accuracy of the state-of-the-art models. The applicability of
our approach is shown on multi-modal cardiac data sets and
public benchmarks. In addition, we demonstrate how the
learnt deep models of 3-D shapes can be interpreted and
used as biomarkers for classification of cardiac pathologies.

Index Terms— Shape prior, convolutional neural network,
medical image segmentation, image super-resolution.

|I. INTRODUCTION
MAGE segmentation techniques aim to partition an image
into meaningful parts which are used for further analysis.
The segmentation process is typically driven by both the
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underlying data and a prior on the solution space, where the
latter is useful in cases where the images are corrupted or con-
tain artefacts due to limitations in the image acquisition. For
example, bias fields, shadowing, signal drop-out, respiratory
motion, and low-resolution acquisitions are the few common
limitations in ultrasound (US) and magnetic resonance (MR)
imaging.

Incorporating prior knowledge into image segmentation
algorithms has proven useful in order to obtain more accurate
and plausible results as summarised in the recent survey [32].
Prior information can take many forms: boundaries and edge
polarity [10]; shape models [13], [14]; topology specification;
distance prior between regions; atlas models [5], which were
commonly used as a regularisation term in energy optimisation
based traditional segmentation methods (e.g. region growing).
In particular, atlas priors are well suited for medical imaging
applications since they enforce both location and shape priors
through a set of annotated anatomical atlases. Similarly, auto-
context models [45] have made use of label and image priors
in segmentation, which require a cascade of models.

In the context of neural networks (NNs), early work on
shape analysis has focused on learning generative mod-
els through deep Boltzmann Machines (DBMs), namely
ShapeBM [18] that uses a form of DBM with sparse pixel
connectivity. Follow-up work in [9] and [17] has demonstrated
the application of DBMs to binary segmentation problems in
natural images containing vehicles and other types of objects.
However, fully connected DBM for images require a large
number of parameters and consequently model training may
become intractable depending on the size of images. For
this reason, convolutional deep belief nets [48] were recently
proposed for encoding shape prior information. Besides varia-
tional models, cascaded convolutional architectures [27], [37]
have been shown to discover priors on shape and structure
in label space without any a priori specification. However,
this comes at the cost of increased model complexity and
computational needs.

In the context of medical imaging and neural networks,
anatomical priors have not been studied in much depth,
particularly in the current state-of-the-art segmentation tech-
niques [11], [22], [36], [38]. Recent work has shown simple
use cases of priors through adjacency [7] and boundary [10]
conditions. Inclusion of priors in medical imaging could
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potentially have much more impact compared to their use
in natural image analysis since anatomical objects in medical
images are naturally more constrained in terms of their shape
and location.

As explained in a recent NN survey paper [28], the majority
of the classification and regression models utilise a pixel-
level loss function (e.g. cross-entropy or mean square error)
which does not fully take into account the underlying semantic
information and dependencies in the output space (e.g. class
labels). In this paper, we present a novel and generic way
to incorporate global shape/label information into NNs. The
proposed approach, namely anatomically constrained neural
networks (ACNN), is mainly motivated by the early work on
shape priors and image segmentation, in particular PCA based
statistical [13] and active shape models [14]. Our framework
learns a non-linear compact representation of the underlying
anatomy through a stacked convolutional autoencoder [31] and
enforces network predictions to follow the learnt statistical
shape/label distributions. In other words, it favours predictions
that lie on the extracted low dimensional data manifold. More
importantly, our approach is independent of the particular
NN architecture or application; it can be combined with any
of the state-of-the-art segmentation or super-resolution (SR)
NN models and potentially improve its prediction accuracy and
robustness without introducing any memory or computational
complexity at inference time. Lastly, ACNN models, trained
with the proposed prior term which acts as a regulariser,
remove the need for post-processing steps such as conditional
random fields [24] which are often based on heuristics para-
meter tuning. In ACNN, the regularisation is part of the end-
to-end learning which can be a great advantage.

The proposed global training objective in SR corresponds to
a prior on the space of feasible high-resolution (HR) solutions,
which is experimentally shown to be useful since SR is an ill-
posed problem. Similar modifications of the objective function
during training have been introduced to enhance the quality of
natural images, such as perceptual [21] and adversarial [26]
loss terms, which were used to synthesise more realistic
images in terms of texture and object boundaries. In the
context of medical imaging, our priors enforce the synthesised
HR images to be anatomically meaningful while minimising
a traditional image reconstruction loss function.

A. Clinical Motivation

Cardiac imaging has an important role in diagnosis, pre-
operative planning, and post-operative management of patients
with heart disease. Imaging modalities such as US and cardiac
MR (CMR) are widely used to provide detailed assessment of
cardiac function and morphology. Each modality is suitable for
particular clinical use cases; for instance, 2D-US is still the
first line of choice due to its low cost and wide availability,
whereas, CMR is a more comprehensive modality with excel-
lent contrast for both anatomical and functional evaluation of
the heart [23]. Similarly, 3D-US is recommended over the use
of 2D-US since it has been demonstrated to provide more
accurate and reproducible volumetric measurements [25].

Some of the standard clinical acquisition protocols in
3D-US and CMR still have limitations in visualising the

Fig. 1. Results for cardiac MR super-resolution (SR) (top), MR seg-
mentation (middle), and ultrasound (US) segmentation (bottom). From
left to right, we show the input image, a state-of-the-art competing
method, the proposed result, and the ground-truth. (a) Stack of 2D MR
images with respiratory motion artefacts, (b) SR based on CNNs [34],
(c) the proposed ACNN-SR, (d) ground-truth high-resolution (HR) image,
(e) low resolution MR image, (f) 2D segmentation resulting in blocky
contours [44], (g) 3D sub-pixel segmentation from stack of 2D MR
images using ACNN, (h) manual segmentation from HR image, (i) input
3D-US image, (j) FCN based segmentation [11], (k) ACNN, and
(I) manual segmentation.

underlying anatomy due to imaging artefacts (e.g. cardiac
motion, low slice resolution, lack of slice coverage [35]) or
operator-dependent errors (e.g. shadows, signal drop-outs).
In the clinical routine, these challenges are usually tack-
led through multiple acquisitions of the same anatomy and
repeated patient breath-holds leading to long examination
times. Similar problems have been reported in large cohort
studies such as the UK Biobank [35], which leads to inaccurate
quantitative measurements or even the discarding of acquired
images. As can be seen in Fig. 1, the existing state-of-
the-art convolutional neural network (CNN) approaches for
segmentation [11], [44] and image enhancement [34] tasks
perform poorly when the input data is not self-consistent for
the analysis. For this reason, incorporation of prior knowledge
into cardiac image analysis could provide more accurate and
reliable assessment of the anatomy, which is shown in the third
column of the same figure. Most importantly, the proposed
ACNN model allows us to perform HR analysis via sub-
pixel feature maps generated from low resolution (LR) input
data even in the presence of motion artefacts. Using the
proposed approach we can perform full 3D segmentation
without explicit motion correction and do not have to rely
on LR slice-by-slice 2D segmentation.

We demonstrate the applicability of the proposed approach
for cine stacks of 2D MR and 3D-US datasets composed of
1200 and 45 cardiac image sequences respectively. We show
that the proposed segmentation and SR models become
more robust against imaging artefacts mentioned earlier
which is underlined by our state-of-the-art results on the
MICCATI’ 14 CETUS public benchmark [8]. We also demon-
strate that the lower dimensional representations learnt by the
proposed ACNN can be useful for classification of pathologies
such as dilated and hypertrophic cardiomyopathy, and it does
not require point-wise correspondence search between sub-
jects as in [39]. For the evaluation, the MICCAI’17 AC/DC
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Fig. 2. Block diagram of the baseline segmentation (Seg) and super-resolution (SR) models which are combined with the proposed T-L regularisation
block (shown in Fig. 3) to build the ACNN-Seg/SR frameworks. In SR, the illustrated model extracts SR features in low-resolution (LR) space, which
increases computational efficiency. In segmentation, the model achieves sub-pixel accuracy for given LR input image. The skip connections between

the layers are shown in red.

classification benchmark was used. In that regard, the proposed
method is not only useful for image enhancement and segmen-
tation but also for the study of anatomical shape variations in
population studies and their associations with cardiac related
pathologies.

B. Contributions

In this study, we propose a generic and novel technique to
incorporate priors on shape and label structure into NNs for
medical image analysis tasks. In this way, we can constrain the
NN training process and guide the NN to make anatomically
more meaningful predictions, in particular in cases where
the input image data is not informative or consistent enough
(e.g. missing object boundaries). More importantly, to the
best of our knowledge, this is one of the earliest studies
demonstrating the use of convolutional autoencoder networks
to learn anatomical shape variations from medical images.

The proposed ACNN model is evaluated on multi-modal
cardiac datasets from MR and US. Our evaluation shows:
(I A sub-pixel cardiac MR image segmentation approach
that, in contrast to previous CNN approaches [2], [44],
is robust against slice misalignment and coverage problems;
(II) An implicit statistical parametrisation of the left ventricu-
lar shape via NNs for pathology classification; (III) An image
SR technique that extends previous work [34] and that is robust
against slice misalignments; our approach is computationally
more efficient than the state-of-the-art SR-CNN model [34]
as the feature extraction is performed in the low-dimensional
image space. (IV) Last, we demonstrate state-of-the-art 3D-US
cardiac segmentation results on the CETUS’ 14 Benchmark.

Il. METHODOLOGY

In the next section, we briefly summarise the state-of-the-
art methodology for image segmentation (SEG) and super-
resolution (SR), which is based on convolutional neural net-
works (CNNs). We then present a novel methodology that
extends these CNN models with a global training objec-
tive to constrain the output space by imposing anatomical
shape priors. For this, we propose a new regularisation network

that is based on the T-L architecture which was used in
computer graphics [19] to 3D render objects from natural
images.

A. Medical Image Segmentation With CNN Models

Let y, = {yi}ies be an image of class labels representing
different tissue types with y; € £ = {1,2, ... C}. Furthermore
let x {xi € R,i € &S} be the observed intensity
image. The aim of image segmentation is to estimate y,
having observed x. In CNN based segmentation models [22],
[29], [38], this task is performed by learning a discriminative
function that models the underlying conditional probability
distribution P (y,|x).

The estimation of class densities P(y,|x) consists in assign-
ing to each x; the probability of belonging to each of the
C classes, yielding C sets of class feature maps f. that
are extracted through learnt non-linear functions. The final
decision for class labels is then made by applying softmax
to the extracted class feature maps, in the case of cross-

fe,i
- ch=1 2ies log (%
maps correspond to log likelihood values.

As in the U-Net [38] and DeepMedic [22] models, we learn
the mapping between intensities and labels ¢ (x) : X — L by
optimising the average cross-entropy loss of each class Ly =
chzl L,y using stochastic gradient descent. As shown
in Fig. 2, the mapping function ¢ is computed by passing
the input image through a series of convolution layers and
rectified linear units across different image scales to enlarge
the model’s receptive field. The presented model is com-
posed of two parts: feature extraction (analysis) similar to a
VGG-Net [42] and reconstruction (synthesis) as in the case of
a 3D U-Net [38]. However, in contrast to existing approaches,
we aim for sub-pixel segmentation accuracy by training
up-sampling layers with high-resolution ground-truth maps.
This enables 3D analysis of the underlying anatomy in case of
thick slice 2D image stack acquisitions such as cine cardiac
MR imaging. In this way, it is possible to perform analysis

entropy Ly ) these feature
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Fig. 3. Block diagram of the stacked convolutional autoencoder (AE) net-
work (in grey), which is trained with segmentation labels. The AE model
is coupled with a predictor network (in blue) to obtain a compact non-
linear representation that can be extracted from both intensity and
segmentation images. The whole model is named as T-L network.

on the high-resolution image grid without any preceding
upsampling operation with a SR model [34].

Similar segmentation frameworks (cf. [28]) have been stud-
ied in medical imaging. However, in most of the existing
methods, the models are supervised purely through a local
loss function at pixel level (e.g. cross-entropy, Dice) without
exploiting the global dependencies and structure in the output
space. For this reason, the global description of predictions is
usually not adhering to shape, label, or atlas priors. In con-
trast to this we propose a model that can incorporate the
aforementioned priors in segmentation models. The proposed
framework relies on autoencoder and T-L network models to
obtain a non-linear compact representation of the underlying
anatomy, which are used as priors in segmentation.

B. Convolutional Autoencoder Model and ACNN-Seg

An autoencoder (AE) [46] is a neural network that aims to
learn an intermediate representation from which the original
input can be reconstructed. Internally, it has a hidden layer
h whose activations represent the input image, often referred
as codes. To avoid the AE to directly copy its output, the
AE are often designed to be undercomplete so that the size of
the code is less than the input dimension as shown in Fig. 3.
Learning an AE forces the network to capture the most salient
features of the training data. The learning procedure minimises
a loss function L, (y,, g(f(y,))), where L, is penalising
g(f(y,)) being dissimilar from y,. The functions g and f are
defined as the decoder and encoder components of the AE.

In the proposed method, the AE is integrated into the stan-
dard segmentation network, described in Sec. II-A, as a regu-
larisation model to constrain class label predictions y towards
anatomically meaningful and accurate outputs. The cross-
entropy loss function operates on individual pixel level class
predictions, which does not guarantee global consistency and
plausible anatomical shapes even though the segmentation
network has a receptive field larger than the size of structures
to be segmented. This is due to the fact that back-propagated
gradients are parametrised only by pixel-wise individual prob-
ability divergence terms and thus provide little global context.
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Fig. 4. Training scheme of the proposed anatomically constrained
convolutional neural network (ACNN) for image segmentation and super-
resolution tasks. The proposed T-L network is used as a regularisation
model to enforce the model predictions to follow the distribution of the
learnt low dimensional representations or priors.

To overcome this limitation, class prediction label maps
are passed through the AE to obtain a lower dimensional
(e.g. 64 dimensions) parametrisation of the segmentation and
its underlying structure [40]. By performing AE-based non-
linear lower dimensional projections on both predictions and
ground-truth labels, as shown in Fig. 4, we can build our
ACNN-Seg training objective function though a linear combi-
nation of cross-entropy (L), shape regularisation loss (Lj,),
and weight decay terms as follows:

Li, = | f@@):0,) — f(: 00|
(Lx(qs(x;os),y)m.Lheﬁ—;nwu%) (1)

min
05

Here w corresponds to weights of the convolution filters,
and s denotes all trainable parameters of the segmentation
model and only these parameters are updated during training.
The coupling parameters A; and A, determine the weights of
shape regularisation loss and weight decay terms used in the
training. In this equation, the second term Lj;, ensures that
the generated segmentations are in a similar low dimensional
space (e.g. shape manifold) as the ground-truth labels. In addi-
tion to imposing shape regularisation, this parametrisation
encourages label consistency in model predictions, and reduces
false-positive detections as they can influence the predicted
codes in the hidden layer. The third term corresponds to
weight decay to limit the number of free parameters in
the model to avoid over-fitting. The proposed AE model is
composed of convolutional layers and a fully connected layer
in the middle as shown in Fig. 3, which is similar to the
stacked convolutional autoencoder model proposed in [31].
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The AE model details (e.g. layer configuration, parameter
choices) are provided in the supplementary material.

C. Medical Image Super-Resolution (SR) With CNNs

Super-resolution (SR) image generation is an inverse prob-
lem where the goal is to recover spatial frequency information
that is outside the spatial bandwidth of the low resolution (LR)
observation x € RV to predict a high resolution (HR) image
y, € RM (N « M), as illustrated in the top row of Fig. 1.
Since the high frequency components are missing in the obser-
vation space, usually training examples are used to predict
the most likely P(y,|x) HR output. Image SR is an ill-posed
problem as there are an infinite number of solutions for a given
input sample but only a few would be anatomically meaningful
and accurate. As for the case of image segmentation, learnt
shape representations can be used to regularise image SR,
constraining the model to make only anatomically meaningful
predictions.

Similar to the SR framework described in [34], our proposed
SR model learns a mapping function ® : X — ) to estimate
a high-resolution image y, = ®(x;#0,) where 6, denotes
the model parameters such as convolution kernels and batch-
normalisation statistics. The parameters are optimised by min-
imising the smooth ¢ loss, also known as Huber loss, between
the ground-truth high resolution image and the corresponding
prediction. The smooth ¢; norm is defined as W, (k) =
{0.5k% if |k| < 1, |k| — 0.5 otherwise} and the SR training
objective becomes Ir(}in Dies Yo ((I) (x;;0,)— yl-)

In the proposed SR framework, we used the same model as
shown in Fig. 2. It provides two main advantages over the
state-of-the-art medical image SR model proposed in [34]:
(D the network generates image features in the LR image
grid rather than early upsampling of the features, which
reduces memory and computation requirements significantly.
As highlighted in [41], early upsampling introduces redundant
computations in the HR space since no additional information
is added into the model by performing transposed convolu-
tions [49] at an early stage. (I) The second advantage is the
use of a larger receptive field to learn the underlying anatomy,
which was not the case in earlier SR methods used in medical
imaging [34] and natural image analysis [16], [41] because
these models usually operate on local patch level. Capturing
large context indeed helps our model to better understand the
underlying anatomy and this enables us to enforce global shape
constraints. This is achieved by generating SR feature-maps in
multiple scales using multi strides in the in-plane direction.

Similar to the ACNN-Seg model, it is possible to regu-
larise SR models to synthesise anatomically more meaningful
HR images. To achieve this goal, we extend the standard
AE model to the T-L model which enables us to obtain shape
representation codes directly from the intensity space. The idea
is motivated by the recent work [19] on 3D shape analysis in
natural images. In the next section we will explain the training
strategy and the use of the T-L model as a regulariser.

D. T-L Network Model and SR-ACNN

Shape encoding AE models operate only on the segmen-
tation masks and this limits its application to SR problem

where the model output is an intensity image. To circumvent
this problem, we extend the standard denoising AE to the
T-L regularisation model by combining the AE with a pre-
dictor network (Fig. 3) p(x) : X — H. The predictor can
map an input image into a low dimensional non-parametric
representation of the underlying anatomy (e.g. shape and class
label information), which is learnt by the AE. In other words,
it enables us to learn a hidden representation space that can be
reached by non-linear mappings from both image label space
Y and image intensity space X. In this way, SR models can
be regularised as well with respect to learnt anatomical priors.

This network architecture is useful in image analysis appli-
cations for two main reasons: (I) It enables us to build a
regularisation network that could be used in applications dif-
ferent than image segmentation such as image SR. We propose
to use this new regularisation network at training time of
SR to enforce the models to learn global information about
the images besides the standard pixel-wise (£ distance) image
reconstruction loss. In this way, the regressor SR model is
guided by the additional segmentation information, and it
becomes robust against imaging artefacts and missing infor-
mation. (IT) The second important feature of the T-L model is
the generalisation of the learnt representations. Joint training
of the AE and predictor enables us to learn representations that
could be extracted from both intensity and label space. The
learnt codes will encode the variations that could be interpreted
from both manual annotations and intensity images. Since a
perfect mapping between the intensity and label spaces is
practically not achievable, the T-L learnt codes are expected
to be more representative due to the inclusion of additional
information.

The T-L model is trained in two stages: In the first stage,
the AE is trained separately with ground-truth segmentation
masks and cross-entropy loss L. Later, the predictor model
is trained to match the learnt latent space h by minimising
the Euclidean distance L; between the codes predicted by the
AE and predictor as shown in Fig. 3. Once the loss functions
for both the AE and the predictor converge, the two models are
trained jointly in the second stage. The encoder f is updated
using two separate back-propagated gradients (3355; , ‘20#) and
the two loss functions are scaled to match their range. Tfle first
gradient encourages the encoder to generate codes that could
be easily extracted by the predictor while the second gradient
making sure that a good segmentation-reconstruction can be
obtained at the output of the decoder. Training details are
further discussed in Section III-B. It is important to note that
the T-L regulariser model is used only at training time but not
during inference; in other words, the fully convolutional (FCN)
segmentation and super-resolution models can still be used
for applications using different image sizes. In this paper,
the proposed SR model is referred to as ACNN-SR and its
training scheme is shown in the bottom part of Fig. 4.

Ly, = | p(@(x):0,) — p(3,:0,) |3
A
min (‘Pgl (©Cc;0,) —y,) + 41 - L, + éllwllﬁ)

2)



OKTAY et al..: ACNNs: APPLICATION TO CARDIAC IMAGE ENHANCEMENT AND SEGMENTATION 389

Dimension 1 Dimension 2 Dimension 3 Dimension 4

01 0.1 0.1 0.4
0.05 0.05 dﬂ 0.05 0.05
0 0 0 0

5

-4 0 5 -5 0 5 -5 0 5
Dimension 5 Dimension 6 Dimension 7 Dimension 8

0.1 0.1 0.1 0.1
0.05 0.05 ,rrrnﬂ 0.05 h 1{o0.05 ,.r“ﬁ

| allll, 1o |l 1o |l o=
-4

20 2 4 0o 4 10 5 0 4 0 4 8
Dimension 9 Dimension 10 Dimension 11 Dimension 12
0.1 0.1

% 0.05 0.05
0 0

4 0 4 4 0 5 10 15 -4 0
Dimension 13 Dimension 14 Dimension 15 Dimension 16

0.1 01 01 0.1 m.ﬂ ]]_

X ) 0.0:

o[ Ll ‘mﬂﬂ[hm ® Ll
-4 0 4

-10 -5 0 5 -5 0 5 5 15 25

F

0.1 0.1

0.05 &@m]] 0.05 __rflli:
0 0
4 0

Fig. 5. Histogram of the learnt low-dimensional latent representa-
tions (randomly selected 16 components are shown). The codes in
general follow a smooth and normal distribution which is important for
the training of ACNN models.)

The training objective shown above is composed of weight
decay, pixel-wise and global loss terms. Here A; and A,
determine the weight of shape priors and weight decay terms
while the smooth ¢1 norm loss function ¥ quantifies the recon-
struction error. The global loss Ly, is defined as the Euclidean
distance between the codes generated from the synthesised
and ground-truth HR images. The T-L model is used only in
the network training phase as a regularisation term, similar to
VGG features [42] that were used for representing a perceptual
loss function [21]. However, we are not interested in expanding
the output space to a larger feature-map space, but instead
obtain a compact representation of the underlying anatomy.

E. Learnt Hidden Representations

The learnt low dimensional representation k is used to
constrain NN models. Low dimensional encoding enables us
to train models with global characteristics but also yields better
generalisation power for the underlying anatomy as shown in
earlier work [43]. However, since we update our segmentation
and SR model parameters with the gradients back-propagated
from the global loss layer using the Euclidean distance of these
representations, it is essential to analyse the distribution of the
extracted codes. In Fig. 5, due to space limitations, we show
the histogram of 16 randomly chosen codes (out of 64) of a
T-L model trained with cardiac MR segmentations. Note that
each histogram is constructed using the corresponding code for
every sample in the full dataset. It is observed that the learnt
latent representations in general follow a normal distribution
and they are not separated in multi-clusters (e.g. mixture of
Gaussians). A smooth distribution of the codes ensures better
supervision for the main NN model (SR, Seg) since the global
gradients are back-propagated by computing the Euclidean
distance between the obtained distributions.

This observation can be explained by the fact that the
proposed T-L network is trained with small Gaussian input
noise as in the case of denoising autoencoders. In [1], Alain
and Bengio showed that the denoising reconstruction error
is equivalent to contractive penalty, which forces the feature

extraction (encoder) function f resist perturbations of the input
and contracts these input samples to similar low dimensional

codes. The penalty is defined as Q (k) = 1 H a](;gx) ?
F denotes the Frobenius norm (sum of squared elements), and
h = f(x) represents the codes. The given penalty function
promotes the network to learn the underlying low-dimensional
data manifold and capture its local smooth structure. In addi-
tion to the smoothness of the latent distributions, the extracted
codes are expected to be correlated since the decoder merges
some of the codes along the three spatial dimensions to
construct input feature maps for the transposed convolutions,
but this characteristic is not a limitation in our study.

, where

I11. APPLICATIONS AND EXPERIMENTS

In this section, we present three different applications of the
proposed ACNN model: 3D-US and cardiac MR image seg-
mentation, as well as cardiac MR image SR. The experiments
focus on demonstrating the importance of shape and label
priors for image analysis. Additionally, we analyse the salient
information stored in the learnt hidden representations and
correlate them with clinical indices, showing their potential use
as biomarkers for pathology classification. The next subsection
describes the clinical datasets used in our experiments.

A. Clinical Datasets

1) UK Digital Heart Project Dataset: This dataset ! is com-
posed of 1200 pairs of cine 2D stack short-axis (SAX) and cine
3D high resolution (HR) cardiac MR images. Each image pair
is acquired from a healthy subject using a standard imaging
protocol [4], [15]. In more detail, the 2D stacks are acquired
in different breath-holds and therefore may contain motion
artefacts. Similarly, 3D imaging is not always feasible in the
standard clinical setting due to the requirements for long image
acquisition. The voxel resolution of the images are fixed to
1.25 x 1.25 x 10.00 mm and 1.25 x 1.25 x 2.00 mm for
2D stack low resolution (LR) and HR images respectively.
Dense segmentation annotations for HR images are obtained
by manually correcting initial segmentations generated with a
semi-automatic multi-atlas segmentation method [5], and all
the annotations are performed on the HR images to minimise
errors introduced due to LR in through plane direction. Since
the ground-truth information is obtained from the HR motion-
free images, the experimental results are expected to reflect
the performance of the method with respect to an appropriate
reference. The annotations consist of pixel-wise labelling of
endocardium and myocardium classes. Additionally, the resid-
val spatial misalignment between the 2D LR stacks and
HR volumes is corrected using a rigid transformation esti-
mated by an intensity based image registration algorithm.

2) CETUS’14 Challenge Dataset: CETUS’ 14 segmentation
challenge [8] is a publicly available platform? to benchmark
cardiac 3D ultrasound (US) left-ventricle (LV) segmentation
methods. The challenge dataset is composed of 3D-time
US image sequences acquired from 15 healthy subjects and

1 https://digital-heart.org/
2https://Www.crcatis.insa—lyon.fr/Challcngc/CETUS/indcx.html
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30 patients diagnosed with myocardial infarction or dilated
cardiomyopathy. The images were acquired from apical win-
dows and LV chamber was the main focus of analysis.
Resolution of the images was fixed to 1 mm isotropic voxel
size through linear interpolation. The associated manual con-
tours of the LV boundary were drawn by three different
expert cardiologists, and the annotations were performed only
on the frames corresponding to end-diastole (ED) and end-
systole (ES) phases. Method evaluation is performed in a
blinded fashion on the testing set (30 out of 45) using the
MIDAS web platform.

3) ACDC MICCAI'17 Challenge Dataset: The aim of the
ACDC’17 challenge? is to compare the performance of auto-
matic methods for the classification of MR image examina-
tions in terms of healthy and pathological cases: infarction,
dilated cardiomyopathy, and hypertrophic cardiomyopathy.
The publicly available dataset consists of 20 (per class) cine
stacks of 2D MR image sequences which are annotated at
ED and ES phases by a clinical expert. In the experiments,
latent representations (codes) extracted with the proposed
T-L network are used to classify these images.

B. Training Details of the Proposed Model

In this section, we discuss the details of data augmentation
used in training, and also the optimisation scheme of the
T-L model training. To improve the model’s generalisation
capability, the input training samples are artificially aug-
mented using affine transformations, which is used in both
the segmentation and T-L models. For the SR models, on the
other hand, respiratory motion artefacts between the adjacent
slices are simulated via in-plane rigid transformations that
are defined for each slice independently. The corresponding
ground-truth HR images are not spatially transformed; in this
way, the models learn to output anatomically correct results
when the input slices are motion corrupted. Additionally,
additive Gaussian noise is applied to input intensity images
to make the segmentation and super-resolution models more
robust against image noise. For the AE, the tissue class
labels are randomly swapped with the probability of 0.1 to
encourage the model to map slightly different segmentation
masks to neighbouring points in the lower dimensional latent
space. It ensures the smoothness of the learnt low-dimensional
manifold space as explained in Section II-E.

In the joint training of the T-L network, parameters of the
encoder model (f) are updated by the gradients originating
from both the cross-entropy loss (L) and Euclidean distance
terms (Lp). Instead of applying these two gradient descent
updates sequentially in an iterative fashion, we perform a joint
update training scheme and experimentally observed better
convergence.

C. Cardiac Cine-MR Image Segmentation

In this experiment, NN models are used to segment cardiac
cine MR images in the dataset described in Sec. III-A1. As an
input to the models, only the 2D stack LR images are used,

3 https://www.creatis.insa-lyon.fr/Challenge/acdc/

1
|/ /
|

3D-Seg-MAug

Fig. 6. Segmentation results on two different 2D stack cardiac
MR images. The proposed ACNN model is insensitive to slice mis-
alignments as it is anatomically constrained and it makes less errors in
basal and apical slices compared to the 2D-FCN approach. The results
generated from low resolution image is better correlated with the HR
ground-truth annotations (green).

which is a commonly used acquisition protocol for cardiac
imaging, and the segmentation is performed only on the ED
phase of the sequences. The corresponding ground-truth label
maps, however, are projected from the HR image space, which
are annotated in the HR image grid. The dataset (1200 LR
images & HR labels) is randomly partitioned into three
subsets: training (900), validation (100), and testing (200).
All the images are linearly intensity normalised and cropped
based on the automatically detected six anatomical landmark
locations [33].

The proposed ACNN-Seg method is compared against: the
current state-of-the-art cine MR 2D slice by slice segmenta-
tion method (2D-FCN) [44], 3D-UNet model [12], cascaded
3D-UNet and convolutional AE model (AE-Seg) [37], sub-
pixel 3D-CNN segmentation model (3D-Seg) proposed in
Sec. II-A, and the same model trained with various types of
motion augmentation (3D-Seg-MAug). As the models have a
different layout, the number of trainable parameters (pars) used
in each model is kept fixed to avoid any bias. For the cascaded
AE-Seg model, however, additional convolutional kernels are
used in the AE as suggested in [37]. To observe the influence
of the AE model’s capacity on the AE-Seg model’s perfor-
mance, we performed experiments using different number
of AE pars, and the largest capacity case is denoted by
AE-Seg-M.

The results of the experiments are provided in Table I
together with the capacity of each model. Statistical signif-
icance of the results is verified by performing the Wilcoxon
signed-rank test between the top two performing methods for
each evaluation metric. Based on these results we can draw
three main conclusions: (I) Slice by slice analysis [2], [44]
significantly under-performs compared to the proposed sub-
pixel and ACNN-Seg segmentation methods. In particular,
the dice score metrics are observed to be lower since
2D analysis can yield poor performance in basal and apical
parts of the heart as shown in Fig. 6. Previous slice by
slice segmentation approaches validated their methods on
LR annotations; however, we see that the produced label
maps are far off from the true underlying ventricular geom-
etry and it can be a limiting factor for the analysis of
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TABLE |
STACKS OF 2D CARDIAC MR IMAGES (200) ARE SEGMENTED INTO LV ENDOCARDIUM AND MYOCARDIUM, AND THE SEGMENTATION ACCURACY
IS EVALUATED IN TERMS OF DICE METRIC AND SURFACE TO SURFACE DISTANCES. THE GROUND-TRUTH LABELS ARE OBTAINED FROM HIGH
RESOLUTION 3D IMAGES ACQUIRED FROM SAME SUBJECTS, WHICH DO NOT CONTAIN MOTION AND BLOCKY ARTEFACTS. THE PROPOSED
APPROACH (ACNN-SEG) IS COMPARED AGAINST STATE-OF-THE-ART SLICE BY SLICE SEGMENTATION (2D-FCN [44]) METHOD, 3D-UNET
MOoDEL [12], CASCADED 3D-UNET AND CONVOLUTIONAL AE MODEL (AE-SEG) [37], PROPOSED SUB-PIXEL SEGMENTATION MODEL
(3D-SEG) AND THE SAME MODEL WITH MOTION AUGMENTATION USED IN TRAINING (3D-SEG-MAUG)

Endocardium Myocardium Capacity

Mean Hausdorff Dice Mean Hausdorff Dice # Trainable

Dist. (mm) Dist. (mm) Score (%) Dist. (mm) Dist. (mm) Score (%) Parameters

2D-FCN [44] 2.07+0.61 11.37£7.15 .908+.021 1.58+0.44 9.19+£7.22 727+.046 1.39 x 106

3D-Seg 1.77+£0.84 10.28+8.25 .923+.019 1.48+0.51 10.15+£10.58 773+.038 1.60 x 106

3D-UNet [12] 1.66+0.74 9.944+9.22 .923+.019 1.454+0.47 9.81+11.77 .764+.045 1.64 x 10

AE-Seg [37] 1.75+0.58 8.42+3.64 .926+.019 1.514+0.29 8.52+2.72 .779+.033 1.68 x 10

3D-Seg-MAug 1.59+0.74 8.52+8.13 .928+.019 1.37+0.41 9.41+9.17 .785+.041 1.60 x 108

AE-Seg-M 1.59+0.48 7.52+3.78 .927+.017 1.324+0.26 7.12+2.79 .791+£.036 1.91 x 108

ACNN-Seg 1.37+£0.42 7.89+3.83 939-+.017 1.141+0.22 7.31+£3.59 811+.027 1.60 x 108
p-values p < 0.001 p =~ 0.890 p < 0.001 p < 0.001 p =~ 0.071 p < 0.001 -

ventricle morphology. Similar results were obtained in clinical
studies [15], which however required HR image acquisition
techniques. (II) The results also show that introduction of
shape priors in segmentation models can be useful to tackle
false-positive detections and motion-artefacts. As can be seen
in the bottom row of Fig. 6, without the learnt shape priors,
label map predictions are more prone to imaging artefacts.
Indeed, it is the main reason why we observe such a large
difference in terms of Hausdorff distance. For endocardium
labels, on the other hand, the difference in dice score metric
is observed to be less due to the larger size of the LV blood
pool compared to the myocardium.

Lastly (III), we observe a performance difference between
the cascaded AE based segmentation (AE-Seg [37]) and the
proposed ACNN-Seg models: the segmentations generated
with the former model are strongly regularised due to the sec-
ond stage AE. It results in reduced Hausdorff distance with
marginal statistical significance, but the model overlooks fine
details of the myocardium surface since the segmentations
are generated only from the coarse level feature-maps. More
importantly, cascaded approaches add additional computa-
tional complexity due to the increased number of filters, which
could be redundant given that the standard segmentation model
is able to capture shape properties of the organs as long as
it has a large receptive field and is optimised with shape
constraints. In other words, shape constraints can be learnt
and utilised in standard segmentation models, as shown in
ACNN-Seg, without a need for additional model parame-
ters and computational complexity. We also analysed the
performance change in AE-Seg with respect to the num-
ber of parameters, which shows that the small capacity
AE-Seg model (8 x 10* pars) is not suitable for cardiac image
segmentation as the second stage in the cascaded model does
not improve the performance significantly.

We performed additional segmentation experiments using
only the T-L network. In detail, the input LR image is passed
first through the predictor network and then the extracted codes

Fig. 7.

(a) Cavity noise limits accurate delineation of the LV cavity in
apical areas. (b) The segmentation model can be guided through learnt
shape priors to output anatomically correct delineations. (c) Similarly,
it can make accurate predictions even when the ventricle boundaries are
occluded.

are fed to the decoder network shown in Fig. 3. Label map
predictions are collected at the output of the decoder and
they are compared with the same ground-truth annotations
described previously, which was similar to the AE based
segmentation method proposed in [2] and [3]. We observed
that reconstruction of label-maps from low dimensional rep-
resentations was limited since the ventricle boundaries were
not delineated properly but rather a rough segmentation was
generated (DSC: .734). We believe that this is probably the
main reason why Avendi ef al. [2] proposed the use of a sep-
arate deformable model at the output of a NN. Nevertheless,
the proposed ACNN-Seg does not require an additional post-
processing step.

D. Cardiac 3D Ultrasound Image Segmentation

In the second experiment, the proposed model is evalu-
ated on 3D cardiac ultrasound data which is described in
Sec III-A2. Segmentation models are used to delineate endo-
cardial boundaries and the segmentations obtained on ED and
ES frames are later used to measure volumetric indices such as
ejection fraction (EF). The models are compared also in terms
of surface to surface distance errors of their corresponding
endocardium segmentations. As a baseline CNN method,
we utilised the fully convolutional network model suggested
by [11] for multi-view 3D-US image segmentation problem.
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TABLE Il
3D-US CARDIAC IMAGE SEQUENCES (IN TOTAL 30) ARE SEGMENTED INTO LV CAVITY AND BACKGROUND. SEGMENTATION ACCURACY IS
EVALUATED IN TERMS OF DICE SCORE (DSC), SURFACE-TO-SURFACE DISTANCES. THE CONSISTENCY OF DELINEATIONS ON BOTH ED AND
ES PHASES ARE MEASURED IN TERMS COMPUTED EJECTION FRACTION (EF) VALUES. THE PROPOSED ACNN-SEG METHOD 1S COMPARED
AGAINST STATE-OF-THE ART DEFORMABLE SHAPE FITTING [6] AND FULLY-CONVOLUTIONAL 3D SEGMENTATION [11] METHODS

End Diastole (ED)

End Systole (ES)

BEAS [6] FCN [11] ACNN-Seg BEAS [6] FCN [11] ACNN-Seg p-values
Mean Dist (mm) 2.26+0.73 1.984+1.03 1.89+0.51 2.434+0.91 2.83+1.89 2.094+0.77 p < 0.01
HD Dist (mm) 8.10+2.66 11.94+9.46 6.96+1.75 8.13+3.08  12.454+10.69  7.75+2.65 p < 0.001
DSC (%) .894+.041 .906+.026 912+.023 .856+.057 .8724+.050 873+.051 p =~ 0.05
EF (Corr) 0.889 0.885 0.913 - - - -
EF (Bias+LOA) (ml) -6.784+27.71 2.744+12.01 1.78+10.09 - - - -
It is also observed to be more memory efficient compared to TABLE Il

the standard 3D-UNet architecture [12]. Additionally, we com-
pare our proposed model against the CETUS’14 challenge
winner approach (BEAS) [6] that utilised deformable mod-
els to segment the left ventricular cavity. The challenge
results can be found in [8]. The experimental results, given
in Table II, show that neural network models outperforms
previous state-of-the-art approaches in this public benchmark
dataset although the training data size was limited to 15 image
sequences. The experimental results were evaluated in a
blinded fashion by uploading the generated segmentations
from separate 30 sequences into the CETUS web platform.
The main contribution of ACNN model over the standard
FCN approaches is the improved shape delineation of the
LV, as it can be seen in terms of the distance error metrics.
In particular, Hausdorff distances were reduced significantly
as global regularisation reduces the amount of spurious false
positive predictions and enforces abnormal LV segmentation
shapes to fit into the learnt representation model. This situation
is illustrated in Fig. 7. Similarly, we observed an improvement
in terms of normalised Dice score, which was quantitatively
not significant due to large volumetric size of the LV cavity.
Lastly, we compared the extracted ejection fraction results
to understand both the accuracy of segmentations and also
the consistency of these predictions on both ED and ES
phases. It is observed that the ACNN approach ensures better
consistency between frames although none of the methods
have used temporal information.

The reported results could be further improved by segment-
ing both ED and ES frames simultaneously or by extracting the
temporal content from the sequences. For instance, propaga-
tion of ED masks to ES frames through optical flow has been
shown to be a promising way to achieve this goal. However,
this study mainly focuses on demonstrating the advantages of
using priors in neural network models, and achieving the best
possible segmentation accuracy was not our main focus.

E. Cardiac MR Image Enhancement

The proposed ACNN model is also applied to the image
SR problem and compared against the state-of-the-art CNN
model used in medical imaging [34]. The cardiac MR dataset,
described in Sec. III-A1, was split into two disjoint subsets:

AVERAGE INFERENCE TIME (INF-T) OF THE SR MODELS PER INPUT
LR IMAGE (120 x 120 x 12) USING A GPU (GTX-1080).
ACNN-SR AND SR-CNN [34] MODELS ARE GIVEN THE
SAME NUMBER OF FILTERS AND CAPACITY. MOS [26]
RESULTS, RECEIVED FROM THE CLINICIANS
(R1 AND R2), ARE REPORTED SEPARATELY

SSIM [47] MOS-R1  MOS-R2  Inf-T
Linear TJ77+£.043  2.71+£0.82  2.60+.91 -
B-Spline 779+£.053  2.77+£0.89 2.64+.84 -
SR-CNN [34] .783+.046 3.59+£1.05 3.85+£.70 .29s
3D-UNet [12] .784+.045 3.55+£0.92 3.99+.71 .07 s
ACNN-SR 796+£.041  4.36+0.62 4.25+.68 .06 s
p-values p<0.001 p<0.001 p<0.01 -

training (1000) and testing (200). At testing time, we evaluated
our model with both LR-HR clinical image data. In training,
however, LR images are synthetically generated from clinical
HR data using the MR acquisition model discussed in [20].
More details about the acquisition model can be found in [34].

The quality of the upsampled images is evaluated in terms
of SSIM metric [47] between the clinical HR image data
and reconstructed HR images. SSIM measure assesses the
correlation of local structures and is less sensitive to image
noise than PSNR which is not used in our experiments
since small misalignments between LR-HR image pairs could
introduce large errors in the evaluation due to pixel by
pixel comparisons. More importantly, intensity statistics of
the images are observed to be different for this reason PSNR
measurements would not be accurate. In addition to the SSIM
metric, we used the mean opinion score (MOS) testing [26] to
quantify the quality and similarity of the synthesised and real
HR cardiac images. Two expert cardiologists were asked to
rate the upsampled images from 1 (very poor) to 5 (excellent)
based on the accuracy of the reconstructed LV boundary and
geometry. To serve as a reference, the corresponding clinical
LR and HR images are displayed together with the upsampled
images that are anonymised for a fair comparison.

In Table III, SSIM and MOS scores for the standard
interpolation techniques, SR-CNN, and the proposed ACNN-
SR models are provided. In addition to the increased image
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Fig. 8. Image super-resolution (SR) results. From left to right, input
low resolution MR image, baseline SR approach [34] (no global loss),
the proposed anatomically constrained SR model, and the ground-truth
high resolution acquisition.

quality, the ACNN-SR model is computationally more efficient
in terms of run-time in comparison to the SR-CNN model [34]
by a factor of 5. This is due to the fact that ACNN-SR performs
feature extraction in the low dimensional image space. Further-
more, we investigated the contribution of shape regularisation
term in the application of SR, which is visualised in Fig. 8.
Moreover, we investigated the use of SR as a pre-processing
technique for subsequent analysis such as image segmentation,
similar to the experiments reported in [34]. In that regard,
the proposed SR model and U-Net segmentation models are
concatenated to obtain HR segmentation results. However,
we observed that the proposed baseline sub-pixel segmentation
model (3D-Seg), which merges both SR and segmentation
tasks, performs better than the concatenated models. The
3D-Seg approach uses the convolution kernels more efficiently
without requiring the model to output a high-dimensional
intensity image. For this reason, SR models should be trained
by taking into account the final goal and in some cases it’s not
required to reconstruct a HR intensity image for HR analysis.

F. Learnt Latent Representations and
Pathology Classification

The jointly trained T-L model and its latent representations
are analysed and evaluated in the experiment of image pathol-
ogy classification. This experiment focuses on understanding
the information stored in the latent space and also investigates
whether they can be used to distinguish healthy subjects
from dilated and hypertrophic cardiomyopathy patients. For
this, we collected 64 dimensional codes from segmentation
images of the cardiac MR dataset explained in Sec. III-A3.
Similarly, principal component analysis (PCA) was applied
to the same segmentation images (containing LV blood-pool
and myocardium labels) to generate 64 dimensional linear
projection of the labels, which requires additional spatial-
normalisation prior to linear mapping. The generated codes
were then used as features to train an ensemble of deci-
sion trees to categorise each image. We used 10-fold cross-
validation on 60 CMR sequences and obtained 76.6% vs
83.3% accuracy using PCA and T-L codes extracted from
ED phase. By including the codes from ES phase, the clas-
sification accuracies were improved to 86.6% vs 91.6%. This
result shows that although the AE and T-L models are not
trained with the classification objective, they can still cap-
ture anatomical shape variations that are linked to cardiac
related pathologies. In particular, we observed that some latent
dimensions are more commonly used than others in tree
node splits. By sampling codes from the latent space across
these dimensions, we observed that the network captures the
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Uy

Dimension I -

w—20, i+ 20]

Fig. 9. Anatomical variations captured by the latent representations in
T-L network (swipe from p — 20 to u + 20). Based on our observation,
the first and second dimensions capture the variation in the wall thickness
of the myocardium (x-axis) and lateral wall of the ventricle (y-axis).

variation in wall thickness and blood pool size as shown
in Fig. 9. Since we obtain a regular and smooth latent
representation, it is possible to transverse along the latent space
and generate LV shapes by interpolating between data points.
It is important to note that classification accuracies can be
further improved by training the AE and T-L models with a
classification objective. Our main goal in this experiment was
to understand whether the enforced prior distributions contain
anatomical information or they are abstract representations
only meaningful to the decoder of the AE.

IV. DISCUSSION AND CONCLUSION

In this work, we presented a new image analysis framework
that utilises autoencoder (AE) and T-L networks as regularisers
to train neural network (NN) models. With this new training
objective, at testing time NNs make predictions that are in
agreement with the learnt shape models of the underlying
anatomy, which are referred as image priors. The experimental
results show that the state-of-the-art NN models can benefit
from the learnt priors in cases where the images are corrupted
and contain artefacts. The proposed regulariser model can
be seen as an application-specific training objective. In that
regard, our model differentiates from the VGG-Net [42] fea-
ture based training objectives [21], [26]. VGG features tend to
be more general purpose representations that are learnt from
ImageNet dataset containing natural images of a large variety
of objects. In contrast to this, our AE model is trained solely
on cardiac segmentation masks and features are customised to
identify anatomical variations observed in the heart chambers.
For this reason, we would expect the AE features of the
segmentations to be more distinctive and informative.

As an alternative to the proposed framework, label space
dependencies could be exploited also through adversarial
loss (AL) objective functions. Such approaches have been
used successfully in natural image super-resolution (SR) [26]
and segmentation [30] tasks. In SR application, AL enables
the SR network to hallucinate fine texture detail, and the
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synthesized HR images appear qualitatively more realistic.
However, at the same time the PSNR and SSIM scores are
usually worse. For this reason, the authors of [26] have
pointed out that adversarial training may not be suitable for
medical applications, where the accuracy and fidelity of the
visual content more important than the qualitative appearance
of the HR images. Moreover, we believe that adversarial
training comes at the expense of less interpretability of the
regularisation term and unstable model training behaviour,
which still remains an open research problem.

Additionally, in the experiments we demonstrated that the
learnt codes can be used as biomarkers for classification
of cardiac related pathologies and we analysed the distrib-
ution of the learnt latent space. This latent space can be
further constrained to be Gaussian distributed by replacing
the proposed regularisation model with a variational autoen-
coder. However, this design choice was not considered in our
ACNN framework due to two main reasons: (I) the additional
K-L divergence term (constraint) would reduce the represen-
tation power of the AE; thus, the local anatomical variations
would not be captured in detail. (II) A generative AE model is
not essential for the regularisation of the proposed segmenta-
tion and SR models. A variational architecture would be useful
if it was required to sample random instances from the latent
space and reconstruct anatomically meaningful segmentation
masks; however, in our framework we are only interested in
the anatomy specific AE features for model regularisation.

The presented ACNN framework is not only limited to
the medical image segmentation and SR tasks but can be
extended to other image analysis tasks where prior knowledge
can provide model guidance and robustness. In that regard,
future research will focus on the application of ACNN to
the problems such as human pose estimation, anatomical and
facial landmark localisation on partially occluded image data.
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